ポリアセタール

ポリアセタール 化学構造式
25231-38-3
CAS番号.
25231-38-3
化学名:
ポリアセタール
别名:
ポリアセタール
英語名:
PARAFORMALDEHYDE
英語别名:
PARAFORM;POLYACETAL;ACETAL RESIN;POLY(TRIOXANE);POLYOXMETHYLENE;POLYFORMALDEHYDE;POLYACETAL RESIN;FORMALDEHYDE RESIN;Polyoxymethylenediacetate;oxymethylene homopolymer diacetate
CBNumber:
CB2233204
化学式:
C3H6O3X2
分子量:
90.08
MOL File:
25231-38-3.mol

ポリアセタール 物理性質

融点 :
175 °C
比重(密度) :
1.42 g/mL at 25 °C
蒸気密度:
1.03 (vs air)
蒸気圧:
<1.45 mm Hg ( 25 °C)
闪点 :
158 °F
溶解性:
70℃以上のクロロフェノール:可溶
外見 :
プリルした
色:
白い
Dielectric constant:
3.6(Ambient)
EPAの化学物質情報:
Poly(oxymethylene), .alpha.-acetyl-.omega.-(acetyloxy)- (25231-38-3)

安全性情報

主な危険性  Xn
Rフレーズ  31
Sフレーズ  36
RIDADR  UN 2213 4.1/PG 3
WGK Germany  3
RTECS 番号 RV0540000

ポリアセタール 価格

メーカー 製品番号 製品説明 CAS番号 包装 価格 更新時間 購入

ポリアセタール 化学特性,用途語,生産方法

解説

アルデヒドまたはその環状三量体のイオン重合で得られる-[OCH(R)]n-で示される重合体または共重合体.ポリ(オキシメチレン)-[OCH2]n-が硬質樹脂として用いられている.高温では末端から解重合しやすいので,末端安定化処理が行われている.

用途

ポリアセタールはその特性を活かして自動車産業電子機器家庭用品おもちゃ医療機器など幅広い分野で利用されています特に精密な動きや耐久性が要求される部品に適しており以下のような用途で見られます

化学的特性

The homopolymers and copolymers of formaldehyde, prepared as described above, are rigid materials with broadly similar properties. They are particularly noted for their stiffness, fatigue resistance and creep resistance and are counted as one of the 'engineering plastics'. They find application principally in injection moulded mechanical parts such as gears, cams and plumbing components. The copolymers are somewhat less crystalline and therefore have lower density, melting point, hardness, tensile strength and flexural modulus. The main advantage claimed for the copolymers is improved processability, with less degradation at processing temperatures.
As is characteristic of crystalline polymers which do not interact with any liquids, there are no effective solvents at room temperature for the commercial formaldehyde polymers. At temperatures above 70°C, solution occurs in a few solvents such as the chlorophenols. The resistance of the polymers to inorganic reagents is not, however, outstanding. Strong acids, strong alkalis and oxidizing agents cause a deterioration in mechanical properties. (The copolymers are significantly superior to the homopolymers in alkali resistance.)
Oxidation of polyformaldehyde occurs in air on prolonged exposure to ultraviolet light and/or elevated temperature. Antioxidants are therefore commonly added to the polymers.

製造方法

(a) Homopolymers In the preparation of high molecular weight polyformaldehyde the initial operation consists of the production of pure formaldehyde, free from low molecular weight polymers and other hydroxy compounds which cause chain transfer. In a typical process potassium hydroxide-precipitated paraformaldehyde (degree of polymerization approximately 200) is carefully washed with water and dried for several hours in vacuo at 80??C. The dried polymer is then decomposed in nitrogen at 150-160??C; the product is passed through several traps at -15??C to remove water, glycols, and other impurities. The resulting formaldehyde has a water content (free and combined) of less than 0.1 %.
The formaldehyde is then introduced into a reactor where it passes over the surface of a rapidly stirred solution of initiator (either a Lewis acid or base; triphenylphosphine appears to be favoured) in a carefully dried inert medium such as heptane at about 40??C. The process is designed to give a very low concentration of formaldehyde to minimize transfer from polymer to monomer. To the initiator solution may be added a polymer stabilizer (e.g. diphenylamine) and transfer agents (e.g. traces of water or methanol). Polymerization is continued until the concentration of polymer in the slurry is about 20% and then the polymer is collected by filtration.
In the final stage the polymer is subjected to an esterification reaction to improve its thermal stability. The esterification may be effected with a number of anhydrides, but acetic anhydride is generally preferred. Typically, the polyformaldehyde is heated under slight pressure to about 160??C with acetic anhydride and a small amount of sodium acetate (catalyst). The polymer is soluble in acetic anhydride at this temperature but is precipitated when the solution is cooled. The acetylated polymer is collected by filtration, washed with water (to remove the anhydride and catalyst) and then acetone (containing di-fi-naphthyl-p-phenylenediamine as antioxidant), and dried in vacuo at 70??C. The product is then extruded and chopped into granules. The average molecular weight (Mn) of the polyformaldehyde produced by these methods is generally in the range 30000-100000.
The polymerization of formaldehyde by Lewis bases such as triaryl amines (R3N), arsines, and phosphines proceeds by the following anionic mechanism:

説明図


The polymerization of formaldehyde by Lewis acids such as boron trifluoride proceeds according to following cationic mechanism:

説明図


The hydroxy-terminated polymers have poor thermal stability. Loss of a proton, possibly to an initiator residue, from a chain end gives an anion capable of decomposing to formaldehyde by the reverse of the propagation process. The stability of the polymer is therefore improved if the hydroxy endgroups are removed by esterification:

説明図


It may be noted here that the polymerization of formaldehyde cannot be effected with free radical initiators.
(b) Copolymers
Details of the procedures used in the preparation of commercial formaldehyde copolymers have not been fully disclosed. The principal monomer is trioxan and the second monomer is a cyclic ether such as ethylene oxide, 1,3- dioxolane or an oxetane; ethylene oxide appears to be the preferred comonomer and is used at a level of about 2%. Boron trifluoride (or its etherate) is apparently the most satisfactory initiator, although many cationic initiators are effective; anionic and free radical initiators are not effective. The reaction is carried out in bulk. The rapid solidification of the polymer requires a reactor fitted with a powerful stirrer to reduce particle size and permit adequate temperature control. The copolymer is then heated at lOoDe with aqueous ammonia; in this step, chain-ends are depolymerized to the copolymer units to give a thermally-stable product. The polymer is filtered off and dried prior to stabilizer incorporation, extrusion and granulation.
The mechanism of polymerization of trioxan has not been completely elucidated. A possible scheme, in which boron trifluoride-water is the initiator is as follows:

説明図


In the first step, trioxan is protonated by the complex protic acid formed by interaction of boron trifluoride and water. (It has been shown that no reaction occurs in the complete absence of water). The resulting oxonium ion undergoes ring-opening to give a resonance-stabilized species. This then depolymerizes to build up an equilibrium concentration of formaldehyde, which remains constant during the polymerization. The actual propagation step then involves the addition of formaldehyde rather than trioxan. This scheme accounts for the observation that the polymerization of pure trioxan involves an induction period which may be reduced or even eliminated by the addition of formaldehyde.

安全性

ポリアセタールは環境に配慮した取り扱いが必要な材料です製造過程でホルムアルデヒドという有害物質が発生する可能性がありこの物質は環境や人体に悪影響を及ぼすことが知られていますそのためポリアセタールの製造や加工においては適切な排気設備や安全対策が施される必要がありますまたリサイクルや適切な廃棄方法によって環境への影響を最小限に抑えることが求められます

化学性质

機械的強度高い引張強度と耐衝撃性を持ち重負荷下でも形状を維持します耐熱性ポリアセタールは高い耐熱性を持ち連続使用温度は40度から100度までです化学的安定性多くの溶剤燃料および化学薬品に対して優れた耐性を示します摩耗耐性と低摩擦自己潤滑性があり長期間にわたる使用においても摩耗や摩擦が少ないため潤滑剤を必要としないアプリケーションに適しています

概要

ポリアセタールはその優れた機械的特性耐熱性化学的安定性により幅広いアプリケーションで価値を発揮する熱可塑性プラスチックです自動車産業から家庭用品医療機器に至るまで日常生活の様々な面で重要な役割を担っていますしかしその製造と使用には環境への配慮が必要であり持続可能な材料としての役割を果たすためにはリサイクルや環境への影響を考慮した取り扱いが不可欠ですポリアセタールの利点を活かしつつ環境への影響を最小化することがこれからの材料科学と製造業の大きな課題となるでしょう

ポリアセタール 上流と下流の製品情報

原材料

準備製品


ポリアセタール 生産企業

Global( 13)Suppliers
名前 電話番号 電子メール 国籍 製品カタログ 優位度
CONIER CHEM AND PHARMA LIMITED
+8618523575427
sales@conier.com China 49975 58
Alfa Chemistry
+1-5166625404;
Info@alfa-chemistry.com United States 20405 58
Guangdong wengjiang Chemical Reagent Co., Ltd. 0751-2815987 13927875076
3007432263@qq.com China 9965 58
Shaanxi DIDU pharmaceutical and Chemical Co., Ltd 029-029-81120477 17792793610
1033@dideu.com China 9892 58
Shanghai Saikerui Biotechnology Co. , Ltd. 021-58000709 15900491054
info@scrbio.com China 9588 58
Shanghai Beiwanta Biotechnology Co., Ltd. 021-67187366 19901745723
info@bwtlab.com China 9621 58
SHANGHAI ZZBIO CO., LTD. 15102117276 19921389125
tech@zzbioco.com China 12064 58
Shanghai Weiyite Biotechnology Co., Ltd 15317051735
zhaojing@wytsci.com China 9585 58

25231-38-3(ポリアセタール)キーワード:


  • 25231-38-3
  • PARAFORM
  • POLYACETAL
  • POLYACETAL RESIN
  • POLYFORMALDEHYDE
  • POLY(OXYMETHYLENE), ACETATE END-CAPPED
  • POLYOXMETHYLENE
  • POLY(TRIOXANE)
  • FORMALDEHYDE RESIN
  • .alpha.-acetyl-.omega.-(acetyloxy)-Poly(oxymethylene)
  • alpha-acetyl-omega-(acetyloxy)-poly(oxymethylene
  • Polyoxymethylenediacetate
  • ACETAL RESIN
  • POLY(OXYMETHYLENE), ACETATE END-CAPPED, MELT INDEX 6
  • Poly(oxymethylene), .alpha.-acetyl-.omega.-(acetyloxy)-
  • Poly(oxymethylene), α-acetyl-ω-(acetyloxy)-
  • oxymethylene homopolymer diacetate
  • α-Acetyl-ω-(acetyloxy)-Poly(oxymethylene)
  • ポリアセタール
Copyright 2017 © ChemicalBook. All rights reserved