"Hela人宫颈癌细胞全年复苏|已有STR图谱
传代比例:1:2-1:4(首次传代建议1:2)
生长特性:贴壁生长
【细胞培养经验分享】启蒙老师的重要性:一般进实验室都有师兄师姐带着做,他们就是你做细胞的启蒙老师。他们的操作手法、细节、理论讲解就成了你操作的准则,如营养液、细胞瓶的摆放位置、灭菌处理程序、开盖手法、细胞吹打手法等等。要学会他们的正确操作,在第一次的时候就要重视。像养孩子一样养细胞,细胞有时真的很脆弱,最好每天都去看看它,以防止出现培养箱缺水、缺二氧化碳、停电、温度不够等异常现象,也好及时解决这些意外,避免重复实验带来的更大痛苦。好细胞要及时保种:细胞要分批传代,这样即使有一批出了问题,还有一批备用的。像后者一般人可能不容易做到。但这是我血的教训,有一次细胞污染了,全军覆没。当时可后悔没有保种。细胞跟人一样,不同的细胞,培养特性是不一样的。培养过程中要细细体会,不同细胞系使用不同的培养基和血清。
换液周期:每周2-3次
T1-73 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:PM6细胞、C12细胞、CL MC/9细胞
PG-LH7 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:RSMC细胞、T/GHA-VSMC细胞、CAL 78细胞
Virginia Mason Research Center-Lung Cancer D Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:H211细胞、CLL-CII细胞、bEnd.3[BEND3]细胞
背景信息:HeLa是第一个来自人体组织经连续培养获得的非整倍体上皮样细胞系,它由GeyGO等在1951年从31岁女性黑人的宫颈癌组织建立。经原始组织切片重新观察,Jones等将其诊断为腺癌。已知该细胞系含有人乳头状瘤病毒HPV18序列,需在2级生物安全防护台操作。该细胞角蛋白阳性,p53表达量较低,但表达正常水平的pRB(视网膜母细胞瘤抑制因子)。
Hela人宫颈癌细胞全年复苏|已有STR图谱
产品包装:复苏发货:T25培养瓶(一瓶)或冻存发货:1ml冻存管(两支)
DSMZ菌株保藏中心成立于1969年,是德国的国家菌种保藏中心。该中心一直致力于细菌、真菌、质粒、抗菌素、人体和动物细胞、植物病毒等的分类、鉴定和保藏工作。DSMZ菌种保藏中心是欧洲规模最大的生物资源中心,保藏有动物细胞500多株。Riken BRC成立于1920年,是英国的国家菌种保藏中心。该中心一直致力于细菌、真菌、植物病毒等的分类、鉴定和保藏工作。日本Riken BRC(Riken生物资源保藏中心)是全球三大典型培养物收集中心之一。Riken保藏中心提供了很多细胞系。在世界范围内,这些细胞系,都在医学、科学和兽医中具有重要意义。Riken生物资源中心支持了各种学术、健康、食品和兽医机构的研究工作,并在世界各地不同组织的微生物实验室和研究机构中使用。
SCI1 Cells;背景说明:胚胎;自发永生;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HC11 Mammary Epithelium细胞、SK-NSH细胞、PIGI细胞
LM-TK- Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:RPTC细胞、ID8细胞、GC-2spd(ts)细胞
CoCL3 Cells;背景说明:DLD-1是1977-1979年间D.L.Dexter和同事分离的两株结直肠腺癌细胞株中的一株。在ATCC和其它地方进行的DNAfingerprinting和染色体组型分析表明这株细胞与HCT-15(CCL-225)相似,说明这两者是来自同一个人的不同克隆。他们的遗传起源可通过DNAfingerprinting证实,但染色体组型分析显示它们缺乏染色体标记一致改变或数目上一致改变。细胞的CSAp阴性(CSAp-)。DLD-1细胞的p53抗原表达呈阳性(p53抗原产生了一个C->;传代方法:消化5分钟。1:2。4-5天长满。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:H1355细胞、H2228细胞、T-ALL1细胞
4e2 Cells(提供STR鉴定图谱)
来源说明:细胞主要来源ATCC、ECACC、DSMZ、RIKEN等细胞库
物种来源:人源、鼠源等其它物种来源
Hela人宫颈癌细胞全年复苏|已有STR图谱
形态特性:上皮细胞样
贴壁细胞消化传代时通常采用两种方法:一、加入胰酶等细胞脱落后,再加培养基中止胰酶作用,离心传代;二、加入胰酶后,镜下观察待细胞始脱落时,弃胰酶,加培养分瓶。但前者太麻烦,而后者有可能对细胞施加胰酶选择,因为总是贴壁不牢的细胞先脱落,对肿瘤细胞来说,这部分细胞有可能是恶性程度较GAO的细胞亚群。一种简单的消化传代方法。加入PBS洗去血清或加入胰酶先中和血清的作用(30s),弃之,再加入适量胰酶作用10s-40s(根据细胞消化的难易程度),弃之,这样依赖残余的胰酶就可将细胞消化单细胞。对于较难消化的细胞,可以用2%利多卡因消化5-8分钟,然后再弃去,加培养基吹打也可以,对细胞的影响不大。不用PBS也不用Hanks洗,只要把旧培养吸的干净一点,直接加酶消化应该不会有什么问题。弃培养后,用0.04%的EDA冲洗一次,再用1/4v的0.04%的EDA室温孵育5min,弃取大部分EDA,加入与剩余EDA等量的胰酶(预热)总体积1/10v。消化到有细胞脱落。不过有人说EDA对细胞不HAO,有证据吗?培养的BASMC:倒掉旧培养加入少量胰酶冲一下,倒掉再加入0.125-0.25%胰酶约6-10滴或1ml(25ml bole)消化再加入适量新培养基中和,并分瓶这种方法简单、省事;效果很HAO并且不损失细胞!
LM3 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HCC1500细胞、UCLA-SO-M14细胞、H-35细胞
WPMY-1 Cells;背景说明:肌成纤维基质细胞株,WPMY-1,与RWPE-1cells(ATCCCRL-11609)一样,来源于同一张成人前列腺组织切片的周围区域的基质细胞。通过一个pRSTV质料结构,用SV40大T抗原对基质细胞进行永生化。WPMY-1细胞,与RWPE-1细胞及其它上皮细胞衍生株一样,属于来源于同一个前列腺的一系列细胞株。由于它们来源于同一个前列腺的周围区域,WPMY-1细胞株对于研究分泌和基质与上皮细胞相互作用尤其有用。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:成肌细胞;相关产品有:8226细胞、K7M2-WT细胞、VM Cub 1细胞
BEAS2B Cells;背景说明:从一位非癌个体的正常人支气管上皮病理切片分离出上皮细胞。这些细胞用腺病毒12-SV40病毒杂交病毒感染并克隆。DEAS-2B细胞保留了对血清反应进行鳞关分化的能力,并有用于筛选诱导或影响分化及致癌的化学或生物制剂。细胞角蛋白及SV40抗原染色阳性。;传代方法:消化3-5分钟。1:2。3天内可长满;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:JOSK-M细胞、MCA 38细胞、WM-239-A细胞
SNU-484 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:T.T细胞、KTC-1细胞、EBNA293细胞
NCI-H3255 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:CATH-a细胞、C8166-CD4细胞、H-196细胞
HCFB(HCF) Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:WEHI-231细胞、MG63细胞、OVCAR 420细胞
HDQP1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:Tissue Culture-1细胞、HuP-T4细胞、Ect1/E6E7细胞
D-341 Med Cells;背景说明:详见相关文献介绍;传代方法:每周换液2-3次。;生长特性:悬浮生长;形态特性:髓母细胞样;相关产品有:OVCAR8/ADR细胞、EOC-20细胞、HuCC-T1细胞
H740 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:Neuro2a细胞、SUM-190细胞、IOSE80细胞
PK136 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:NFS60细胞、Vero-76细胞、Institute for Medical Research-90细胞
CHP-100 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:PC9细胞、CAL-33细胞、HPDE6c7细胞
IEC-6 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:AdHek细胞、OCI-LY-7细胞、Hs 839.T细胞
SW 403 Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:6传代,每周换液2-3次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:NBL_S细胞、4T1-LUC细胞、A375细胞
MUTZ1 Cells;背景说明:骨髓增生异常综合征;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:P3-X63Ag8细胞、Human Epithelioma-2细胞、HITT15细胞
Tu-177 Cells;背景说明:喉鳞癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:MUG-Chor1细胞、NIH:OVCAR-10细胞、WM2664细胞
MLA 144 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:ATDC-5细胞、CAL 51细胞、NCI-H1650细胞
GC-1spg Cells;背景说明:精原细胞;SV40转化;BALB/c;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SK.MEL.2细胞、NCI-H1299细胞、YES 2细胞
Abcam HCT 116 RNF2 KO Cells(提供STR鉴定图谱)
AG08182 Cells(提供STR鉴定图谱)
BayGenomics ES cell line GST067 Cells(提供STR鉴定图谱)
BayGenomics ES cell line XB130 Cells(提供STR鉴定图谱)
BMS2 Cells(提供STR鉴定图谱)
CMM8 Cells(提供STR鉴定图谱)
DA03635 Cells(提供STR鉴定图谱)
deltaTCAR-3 Cells(提供STR鉴定图谱)
GM02587 Cells(提供STR鉴定图谱)
SK-Col-1 Cells;背景说明:该细胞来源于结直肠病人的转移性腹水。;传代方法:1:2-1:3传代,每周2-3次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:H-1838细胞、NIE-115细胞、TYK-nu细胞
HO1-N-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:143TK-细胞、NCIH847细胞、YD15细胞
KOPN-8 Cells;背景说明:B淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:NCI-H1954细胞、FRO 81-2细胞、SW 1088细胞
Karpas 299 Cells;背景说明:间变性大细胞淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:HNE-1细胞、AML-12细胞、RINm5F细胞
3 LL Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:UM-UC14细胞、NCI-H1954细胞、GM03671细胞
BT 549 Cells;背景说明:该细胞1978年由W.G.Coutinho和E.Y.Lasfargues建系,源自一位72岁患有乳腺导管癌的白人女性,来源组织包括乳头及浸润导管。该细胞形态包括上皮样细胞及多核巨细胞,可分泌一种粘性物质。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:DU4475细胞、HS-729细胞、Mouse podocyte细胞
NBL-S Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:CZ-1细胞、H-1395细胞、U-373MG ATCC细胞
OUMS-23 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:210RCY3-Ag1.2.3细胞、SF 763细胞、COLO206F细胞
Hela人宫颈癌细胞全年复苏|已有STR图谱
NP69SV40T Cells;背景说明:鼻咽;上皮细胞;SV40转化;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:MC3T3E1细胞、HOEC细胞、MGHU1细胞
TE-85 Cells;背景说明:骨肉瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Calf Pulmonary Artery 47细胞、MDCK Type II细胞、COLO-320细胞
SKMEL-24 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:星形的;相关产品有:MDA-134细胞、AE 1201细胞、MV4II细胞
NCI H2106 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2次。;生长特性:悬浮生长;形态特性:详见产品说明书;相关产品有:IPLB-SF-21细胞、Human podocyte细胞、TE671/RD细胞
PLA 802 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:MCF-7ADR细胞、Fukuoka University-Malignant mixed Mullerian Tumor-1细胞、MGH-UI细胞
TALL-1 [Human adult T-ALL] Cells;背景说明:该细胞源于一名复发T-ALL(急性T淋巴细胞性白血病)的儿童的外周血;具有很强的细胞毒性,体内体外实验中都能破坏肿瘤细胞;IL-2可使细胞更好地生长;α/β TCR阳性,γ/δ TCR阴性;可产生IFNγ、TNF-α和GM-CSF。;传代方法:维持细胞密度在4×105-1×106 cells/ml之间,2-3天换液1次 ;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:NCI-1155细胞、H-2052细胞、Panc05.04细胞
OCI-Ly 7 Cells;背景说明:弥漫大B淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:H220细胞、253J-BV细胞、Tsup-1细胞
GM19813 Cells(提供STR鉴定图谱)
HAP1 IRAK2 (-) 2 Cells(提供STR鉴定图谱)
PC-14 Cells;背景说明:肺腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SW 982细胞、DV90细胞、C33A细胞
CEM-T4 Cells;背景说明:急性T淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:MDA-MB 468细胞、OCI-AML-2细胞、MDCK (NBL-2)细胞
Biologics Standards-Cercopithecus-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:H-810细胞、KAT-5细胞、MB39细胞
Saos2 Cells;背景说明:该细胞是FoghJ和TrempeG分离和鉴定的众多人类肿瘤细胞系中的一种;该细胞来自一位11岁的白人女性的骨肉瘤组织。患者经过放疗以及甲喋呤、阿霉素、长春新碱、环磷酰胺和aramycin-C等多种药物治疗。该细胞在免疫抑制小鼠中不致瘤,细胞表达表皮生长因子EGF受体、转化生长因子β(1型和2型)受体。;传代方法:1:2-1:4传代;每周1-2次。;生长特性:贴壁生长;形态特性:上皮样;多角形;相关产品有:BHK21细胞、CL MC/9细胞、RH-30细胞
HCE Cells;背景说明:角膜上皮细胞;Ad-SV40转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HEC-1-A细胞、SMA560细胞、LUDLU-1细胞
HPAF-I Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:KM.12细胞、HC11 Mammary Epithelium细胞、Hs 832(C).T细胞
Karpas-422 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:Colon 38细胞、T.T细胞、Caco-2/ATCC细胞
NGP Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:CEM-C1细胞、K299细胞、MRC-9细胞
HPS0846 Cells(提供STR鉴定图谱)
JNUCK-2 Cells(提供STR鉴定图谱)
MDCC-HP28 Cells(提供STR鉴定图谱)
ND41016 Cells(提供STR鉴定图谱)
PSF [Pelodiscus] Cells(提供STR鉴定图谱)
Ubigene HeLa UBE3C KO Cells(提供STR鉴定图谱)
XPH4PV Cells(提供STR鉴定图谱)
HG01101 Cells(提供STR鉴定图谱)
TW-039 Cells;背景说明:鼻咽癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:RT-4细胞、102PT细胞、GalK 1细胞
Hep-G2/C3A Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,每周换液2次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:alpha TC1-6细胞、BJA-B-1细胞、aTC1-6细胞
NK62a Cells;背景说明:这株细胞有EB病毒基因组。;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:OV-1063细胞、ZYM-SVEC01细胞、PG-LH7细胞
Cloudman S91 melanoma clone M-3 Cells;背景说明:黑色素瘤;雄性;DBA;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:451Lu细胞、BNL CL.2细胞、HBL-1 [Human diffuse large B-cell lymphoma]细胞
SNU-C2B Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MDA-MB-435细胞、H-82细胞、HuLEC-5a细胞
SNU-C2B Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MDA-MB-435细胞、H-82细胞、HuLEC-5a细胞
H-35 Cells;背景说明:在糖皮质激素、胰岛素或cAMP衍生物的诱导下可以产生酪酸基转移酶;可被逆转录病毒感染;可产生白蛋白、转铁蛋白、凝血酶原;在AxC大鼠中可以成瘤。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:KP 4细胞、SUDHL2细胞、BSC1细胞
H647 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代;每周换液2次。;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:DMS-273细胞、FRhK4细胞、Reuber-H-35 hepatoma细胞
RA Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:T47D细胞、NCIH2291细胞、MV522细胞
Nb2 Cells;背景说明:恶性淋巴瘤;雄性;Nb;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:C-4I细胞、C32-mel细胞、U-251MG细胞
SNUC2A Cells;背景说明:详见相关文献介绍;传代方法:每周两次换液;生长特性:松散附着、多单元的聚合;形态特性:上皮细胞样;相关产品有:A 549细胞、Panc_02_03细胞、Michigan Cancer Foundation-12A细胞
SNU-719 Cells;背景说明:胃癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HcerEpic细胞、P36细胞、Sp2/0-Ag14细胞
SK-GT-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:6-10B细胞、H1963细胞、M2-10B4细胞
V 79-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:FHs 74 Int细胞、K 562细胞、AU-565细胞
SHSY-5Y Cells;背景说明:据报道,该细胞的密度可高达1×106cells/cm2,具有中等水平的多巴胺β羟化酶的活性。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HEL-1细胞、SKLMS-1细胞、Human Corneal Epithelial cells-Transformed细胞
SMS-KCN-A Cells(提供STR鉴定图谱)
CMT-93 Cells;背景说明:结肠癌;C57BL/ICRF;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Bac1 2F5细胞、D341MD细胞、H1105细胞
HLE-B3 Cells;背景说明:晶状体;Ad12-SV40转化;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:2PK-3细胞、HTSMC细胞、RPE-hTERT细胞
3T3-A31 Cells;背景说明:胚胎;成纤维;自发永生;雄性;BALB/c;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:RBE细胞、Sun Yat-sen university Ophtalmic center-Retinoblastoma 50细胞、SupB15WT细胞
BV-2 Cells;背景说明:源于C57BL/6小鼠小胶质细胞,表达核v-myc、染色体v-raf癌基因,表面表达envgp70抗原,在形态学、表型及功能上有吞噬细胞的特征。;传代方法:1:6传代;2-3天1次。;生长特性:半贴壁生长;形态特性:多形型;相关产品有:SKG IIIa细胞、INS1-E细胞、Mo7e细胞
U-87 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:LLC-WRC 256细胞、TE-12细胞、McArdle RH-7777细胞
EFM-192C Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:C-33A细胞、MDAPC2B细胞、293-H细胞
CMEC/D3 Cells;背景说明:脑微血管;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:DB细胞、GM00215A细胞、FBHE细胞
HNEpC Cells;背景说明:鼻粘膜;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Jurkat-77细胞、M-NFS-60细胞、C4-I细胞
Hela人宫颈癌细胞全年复苏|已有STR图谱
Reuber-H-35 hepatoma Cells;背景说明:在糖皮质激素、胰岛素或cAMP衍生物的诱导下可以产生酪酸基转移酶;可被逆转录病毒感染;可产生白蛋白、转铁蛋白、凝血酶原;在AxC大鼠中可以成瘤。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HCC-1588细胞、MPC5细胞、SW-527细胞
SUM190 Cells;背景说明:乳腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SW 780细胞、L-929细胞、BALB 3T3 clone A31细胞
Kit-225-K6 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:OVCA-420细胞、H1092细胞、SUDHL-8细胞
TSU-Pr1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:H1568细胞、CMT 93细胞、HME-1细胞
H1155 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2-3次。;生长特性:悬浮生长;形态特性:上皮细胞;相关产品有:SK UT 1细胞、MH-22a细胞、RCC4细胞
16HBE Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:OCI Ly19细胞、MOLT 3细胞、MDA 1386细胞
BayGenomics ES cell line RRN258 Cells(提供STR鉴定图谱)
BayGenomics ES cell line YHA367 Cells(提供STR鉴定图谱)
H280-4 Cells(提供STR鉴定图谱)
PA317 LXSN 16E6E7 Cells(提供STR鉴定图谱)
AFRC MAC 22 Cells(提供STR鉴定图谱)
HOS-143B/DOXR8 Cells(提供STR鉴定图谱)
" "PubMed=13261081
Moore A.E., Sabachewsky L., Toolan H.W.
Culture characteristics of four permanent lines of human cancer cells.
Cancer Res. 15:598-602(1955)
PubMed=16589695; DOI=10.1073/pnas.41.7.432; PMCID=PMC528114
Puck T.T., Marcus P.I.
A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors.
Proc. Natl. Acad. Sci. U.S.A. 41:432-437(1955)
PubMed=14031339
Katzberg A.A.
The effect of space flights on living human cells aboard Discoverer XVIII.
Tech. Doc. Rep. SAMTDR USAF Sch. Aerosp. Med. 62:43.1-43.4(1962)
PubMed=14185313; DOI=10.1126/science.146.3641.241
Cell Culture Collection Committee
Animal cell strains. The Cell Culture Collection Committee has assembled and certified 23 strains of animal cells.
Science 146:241-243(1964)
PubMed=5668122; DOI=10.3181/00379727-128-33119
Peterson W.D. Jr., Stulberg C.S., Swanborg N.K., Robinson A.R.
Glucose-6-phosphate dehydrogenase isoenzymes in human cell cultures determined by sucrose-agar gel and cellulose acetate zymograms.
Proc. Soc. Exp. Biol. Med. 128:772-776(1968)
DOI=10.1007/BF02618370
Stulberg C.S., Coriell L.L., Kniazeff A.J., Shannon J.E.
The animal cell culture collection.
In Vitro 5:1-16(1970)
PubMed=4942173; DOI=10.1097/00006250-197112000-00028
Jones H.W. Jr., McKusick V.A., Harper P.S., Wuu K.-D.
George Otto Gey (1899-1970). The HeLa cell and a reappraisal of its origin.
Obstet. Gynecol. 38:945-949(1971)
DOI=10.1007/978-1-4757-1647-4_13
Biedler J.L.
Chromosome abnormalities in human tumor cells in culture.
(In book chapter) Human tumor cells in vitro; Fogh J. (eds.); pp.359-394; Springer; New York; USA (1975)
PubMed=1246620; DOI=10.1126/science.1246620
Hsu S.H., Schacter B.Z., Delaney N.L., Miller T.B., McKusick V.A., Kennett R.H., Bodmer J.G., Young D., Bodmer W.F.
Genetic characteristics of the HeLa cell.
Science 191:392-394(1976)
PubMed=77569; DOI=10.1111/j.1399-0039.1978.tb01259.x
Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.
Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.
Tissue Antigens 11:279-286(1978)
PubMed=6256643; DOI=10.1038/288724a0
Day R.S. 3rd, Ziolkowski C.H.J., Scudiero D.A., Meyer S.A., Lubiniecki A.S., Girardi A.J., Galloway S.M., Bynum G.D.
Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains.
Nature 288:724-727(1980)
PubMed=6935474; DOI=10.1093/jnci/66.2.239
Wright W.C., Daniels W.P., Fogh J.
Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.
J. Natl. Cancer Inst. 66:239-247(1981)
PubMed=6358339; DOI=10.1093/jhmas/38.4.415
Brown R.W., Henderson J.H.M.
The mass production and distribution of HeLa cells at Tuskegee Institute, 1953-55.
J. Hist. Med. Allied Sci. 38:415-431(1983)
PubMed=6401685; DOI=10.1007/BF02617989
Halton D.M., Peterson W.D. Jr., Hukku B.
Cell culture quality control by rapid isoenzymatic characterization.
In Vitro 19:16-24(1983)
PubMed=6825208; DOI=10.1093/carcin/4.2.199
Yarosh D.B., Foote R.S., Mitra S., Day R.S. 3rd
Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains.
Carcinogenesis 4:199-205(1983)
PubMed=2983228; DOI=10.1038/314111a0
Schwarz E., Freese U.-K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H.
Structure and transcription of human papillomavirus sequences in cervical carcinoma cells.
Nature 314:111-114(1985)
PubMed=2990217; PMCID=PMC1888002
Yee C., Krishnan-Hewlett I., Baker C.C., Schlegel R., Howley P.M.
Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines.
Am. J. Pathol. 119:361-366(1985)
CLPUB00262
Gold M.
A conspiracy of cells. One woman's immortal legacy and the medical scandal it caused.
(In book) ISBN 9780887060991; pp.1-171; State University of New York Press; Albany; USA (1986)
PubMed=3518877; DOI=10.3109/07357908609038260
Fogh J.
Human tumor lines for cancer research.
Cancer Invest. 4:157-184(1986)
PubMed=3028716; DOI=10.1159/000132342
Popescu N.C., DiPaolo J.A., Amsbaugh S.C.
Integration sites of human papillomavirus 18 DNA sequences on HeLa cell chromosomes.
Cytogenet. Cell Genet. 44:58-62(1987)
PubMed=3180844; DOI=10.1159/000132579
Chen T.-R.
Re-evaluation of HeLa, HeLa S3, and HEp-2 karyotypes.
Cytogenet. Cell Genet. 48:19-24(1988)
PubMed=3371749; DOI=10.1016/0090-8258(88)90029-7
Grenman S.E., Shapira A., Carey T.E.
In vitro response of cervical cancer cell lines CaSki, HeLa, and ME-180 to the antiestrogen tamoxifen.
Gynecol. Oncol. 30:228-238(1988)
PubMed=1522048; DOI=10.1007/BF02634140
Kataoka E., Honma M., Ohnishi K., Sofuni T., Mizusawa H.
Application of highly polymorphic DNA markers to the identification of HeLa cell sublines.
In Vitro Cell. Dev. Biol. Anim. 28:553-556(1992)
PubMed=8380785; DOI=10.1006/gyno.1993.1016
Iwasaka T., Oh-uchida M., Matsuo N., Yokoyama M., Fukuda K., Hara K., Fukuyama K., Hori K., Sugimori H.
Correlation between HPV positivity and state of the p53 gene in cervical carcinoma cell lines.
Gynecol. Oncol. 48:104-109(1993)
PubMed=9892199
Macville M.V.E., Schrock E., Padilla-Nash H.M., Keck C., Ghadimi B.M., Zimonjic D.B., Popescu N.C., Ried T.
Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping.
Cancer Res. 59:141-150(1999)
PubMed=10423141; DOI=10.1099/0022-1317-80-7-1725
Meissner J.D.
Nucleotide sequences and further characterization of human papillomavirus DNA present in the CaSki, SiHa and HeLa cervical carcinoma cell lines.
J. Gen. Virol. 80:1725-1733(1999)
PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Short tandem repeat profiling provides an international reference standard for human cell lines.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)
PubMed=11668190; DOI=10.1177/002215540104901105
Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
Immunocytochemical analysis of cell lines derived from solid tumors.
J. Histochem. Cytochem. 49:1369-1378(2001)
PubMed=12001993; DOI=10.1038/nrc775
Masters J.R.W.
HeLa cells 50 years on: the good, the bad and the ugly.
Nat. Rev. Cancer 2:315-319(2002)
PubMed=12793746; DOI=10.1269/jrr.43.s133
Ohnishi T., Ohnishi K., Takahashi A., Taniguchi Y., Sato M., Nakano T., Nagaoka S.
Detection of DNA damage induced by space radiation in Mir and space shuttle.
J. Radiat. Res. 43 Suppl. 1:S133-S136(2002)
PubMed=12661003; DOI=10.1002/gcc.10196
Seitz S., Wassmuth P., Plaschke J., Schackert H.K., Karsten U., Santibanez-Koref M.F., Schlag P.M., Scherneck S.
Identification of microsatellite instability and mismatch repair gene mutations in breast cancer cell lines.
Genes Chromosomes Cancer 37:29-35(2003)
PubMed=15302935; DOI=10.1073/pnas.0404720101; PMCID=PMC514446
Beausoleil S.A., Jedrychowski M.P., Schwartz D., Elias J.E., Villen J., Li J.-X., Cohn M.A., Cantley L.C., Gygi S.P.
Large-scale characterization of HeLa cell nuclear phosphoproteins.
Proc. Natl. Acad. Sci. U.S.A. 101:12130-12135(2004)
PubMed=15531914; DOI=10.1038/sj.onc.1208235
Baldus S.E., Schwarz E., Lohrey C., Zapatka M., Landsberg S., Hahn S.A., Schmidt D., Dienes H.-P., Schmiegel W.H., Schwarte-Waldhoff I.
Smad4 deficiency in cervical carcinoma cells.
Oncogene 24:810-819(2005)
PubMed=15901131; DOI=10.1016/j.prp.2005.01.002
Murai Y., Hayashi S., Takahashi H., Tsuneyama K., Takano Y.
Correlation between DNA alterations and p53 and p16 protein expression in cancer cell lines.
Pathol. Res. Pract. 201:109-115(2005)
PubMed=17311676; DOI=10.1186/1471-2164-8-53; PMCID=PMC1805756
Kloth J.N., Oosting J., van Wezel T., Szuhai K., Knijnenburg J., Gorter A., Kenter G.G., Fleuren G.J., Jordanova E.S.
Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer.
BMC Genomics 8:53.1-53.13(2007)
PubMed=19450234; DOI=10.2144/000113089; PMCID=PMC2696096
Rahbari R., Sheahan T., Modes V., Collier P., Macfarlane C.M., Badge R.M.
A novel L1 retrotransposon marker for HeLa cell line identification.
BioTechniques 46:277-284(2009)
PubMed=19722756; DOI=10.5858/133.9.1463
Lucey B.P., Nelson-Rees W.A., Hutchins G.M.
Henrietta Lacks, HeLa cells, and cell culture contamination.
Arch. Pathol. Lab. Med. 133:1463-1467(2009)
CLPUB00377
Skloot R.L.
The immortal life of Henrietta Lacks.
(In book) ISBN 9781400052172; pp.1-400; Random House; New York; USA (2010)
CLPUB00468
Javitt G.H.
Why not take all of me? Reflections on the immortal life of Henrietta Lacks and the status of participants in research using human specimens.
Minn. J. Law Sci. Technol. 11:713-755(2010)
PubMed=19941903; DOI=10.1016/j.jviromet.2009.11.022
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
J. Virol. Methods 164:116-121(2010)
PubMed=21269460; DOI=10.1186/1752-0509-5-17; PMCID=PMC3039570
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.
Initial characterization of the human central proteome.
BMC Syst. Biol. 5:17.1-17.13(2011)
PubMed=22068331; DOI=10.1038/msb.2011.81; PMCID=PMC3261714
Nagaraj N., Wisniewski J.R., Geiger T., Cox J., Kircher M., Kelso J., Paabo S., Mann M.
Deep proteome and transcriptome mapping of a human cancer cell line.
Mol. Syst. Biol. 7:548-548(2011)
PubMed=21937730; DOI=10.1074/mcp.M111.011429; PMCID=PMC3316722
Boisvert F.-M., Ahmad Y., Gierlinski M., Charriere F., Lamont D., Scott M., Barton G., Lamond A.I.
A quantitative spatial proteomics analysis of proteome turnover in human cells.
Mol. Cell. Proteomics 11:M111.011429-M111.011429(2012)
PubMed=22278370; DOI=10.1074/mcp.M111.014050; PMCID=PMC3316730
Geiger T., Wehner A., Schaab C., Cox J., Mann M.
Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.
Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)
PubMed=22412903; DOI=10.1371/journal.pone.0032667; PMCID=PMC3296745
Vazquez-Mena O., Medina-Martinez I., Juarez-Torres E., Barron V., Espinosa A., Villegas-Sepulveda N., Gomez-Laguna L., Nieto-Martinez K., Orozco L., Roman-Bassaure E., Munoz Cortez S., Borges Ibanez M., Venegas-Vega C.A., Guardado-Estrada M., Rangel-Lopez A., Kofman S., Berumen J.
Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines.
PLoS ONE 7:E32667-E32667(2012)
CLPUB00507
Pultarova T.
HeLa cells: immortal space travellers.
Space Saf. Mag. 7:10-12(2013)
PubMed=23205564; DOI=10.1021/pr300859k
Malerod H., Graham R.L.J., Sweredoski M.J., Hess S.
Comprehensive profiling of N-linked glycosylation sites in HeLa cells using hydrazide enrichment.
J. Proteome Res. 12:248-259(2013)
PubMed=23336012; DOI=10.1371/journal.pone.0054672; PMCID=PMC3545996
Horvat T., Dezeljin M., Redzic I., Barisic D., Herak Bosnar M., Lauc G., Zoldos V.
Reversibility of membrane N-glycome of HeLa cells upon treatment with epigenetic inhibitors.
PLoS ONE 8:E54672-E54672(2013)
PubMed=23925224; DOI=10.1038/500141a; PMCID=PMC5101952
Hudson K.L., Collins F.S.
Biospecimen policy: family matters.
Nature 500:141-142(2013)
PubMed=23925245; DOI=10.1038/nature12064; PMCID=PMC3740412
Adey A.C., Burton J.N., Kitzman J.O., Hiatt J.B., Lewis A.P., Martin B.K., Qiu R.-L., Lee C., Shendure J.
The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.
Nature 500:207-211(2013)
PubMed=24134916; DOI=10.1186/1755-8166-6-44; PMCID=PMC3879223
McCormack A., Fan J.-L., Duesberg M., Bloomfield M., Fiala C., Duesberg P.H.
Individual karyotypes at the origins of cervical carcinomas.
Mol. Cytogenet. 6:44.1-44.23(2013)
PubMed=24618588; DOI=10.1371/journal.pone.0091433; PMCID=PMC3950186
Chernobrovkin A.L., Zubarev R.A.
Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.
PLoS ONE 9:E91433-E91433(2014)
PubMed=24696503; DOI=10.1074/mcp.M113.035170; PMCID=PMC4047476
Guo X.-F., Trudgian D.C., Lemoff A., Yadavalli S., Mirzaei H.
Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics.
Mol. Cell. Proteomics 13:1573-1584(2014)
PubMed=24908793
Gilgenkrantz S.
Sixty years of HeLa cell cultures.
Hist. Sci. Med. 48:139-144(2014)
PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
OncoImmunology 3:e954893.1-e954893.12(2014)
CLPUB00376
Verspaget C.J.
Unruly bodies: monstrous readings of biotechnology.
Thesis PhD (2015); Curtin University; Perth; Australia
PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)
PubMed=25807930; DOI=10.1002/anie.201500342; PMCID=PMC4471546
Broncel M., Serwa R.A., Ciepla P., Krause E., Dallman M.J., Magee A.I., Tate E.W.
Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic profiling of protein lipidation during vertebrate development.
Angew. Chem. Int. Ed. Engl. 54:5948-5951(2015)
PubMed=25877200; DOI=10.1038/nature14397
Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
A resource for cell line authentication, annotation and quality control.
Nature 520:307-311(2015)
PubMed=25894527; DOI=10.1371/journal.pone.0121314; PMCID=PMC4404347
Bausch-Fluck D., Hofmann A., Bock T., Frei A.P., Cerciello F., Jacobs A., Moest H., Omasits U., Gundry R.L., Yoon C., Schiess R., Schmidt A., Mirkowska P., Hartlova A.S., Van Eyk J.E., Bourquin J.-P., Aebersold R., Boheler K.R., Zandstra P.W., Wollscheid B.
A mass spectrometric-derived cell surface protein atlas.
PLoS ONE 10:E0121314-E0121314(2015)
PubMed=26554430; DOI=10.1021/acs.analchem.5b03639
Dimayacyac-Esleta B.R.T., Tsai C.-F., Kitata R.B., Lin P.-Y., Choong W.-K., Lin T.-D., Wang Y.-T., Weng S.-H., Yang P.-C., Arco S.D., Sung T.-Y., Chen Y.-J.
Rapid high-pH reverse phase stagetip for sensitive small-scale membrane proteomic profiling.
Anal. Chem. 87:12016-12023(2015)
PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Genome Med. 7:118.1-118.7(2015)
PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
A landscape of pharmacogenomic interactions in cancer.
Cell 166:740-754(2016)
PubMed=28078501; DOI=10.1007/s11626-016-0128-8
Ambrose C.T.
The Tissue Culture Laboratory of Dr. George Otto Gey 60 yrs ago as recalled by a former student.
In Vitro Cell. Dev. Biol. Anim. 53:467-473(2017)
PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)
PubMed=28261610; DOI=10.1155/2017/4180703; PMCID=PMC5316418
Kontostathi G., Zoidakis J., Makridakis M., Lygirou V., Mermelekas G., Papadopoulos T., Vougas K., Vlamis-Gardikas A., Drakakis P., Loutradis D., Vlahou A., Anagnou N.P., Pappa K.I.
Cervical cancer cell line secretome highlights the roles of transforming growth factor-beta-induced protein ig-h3, peroxiredoxin-2, and NRF2 on cervical carcinogenesis.
BioMed Res. Int. 2017:4180703.1-4180703.15(2017)
PubMed=28601559; DOI=10.1016/j.cels.2017.05.009; PMCID=PMC5493283
Bekker-Jensen D.B., Kelstrup C.D., Batth T.S., Larsen S.C., Haldrup C., Bramsen J.B., Sorensen K.D., Hoyer S., Orntoft T.F., Lindbjerg Andersen C., Nielsen M.L., Olsen J.V.
An optimized shotgun strategy for the rapid generation of comprehensive human proteomes.
Cell Syst. 4:587-599.e4(2017)
PubMed=29156801; DOI=10.18632/oncotarget.21174; PMCID=PMC5689691
Kalu N.N., Mazumdar T., Peng S.-H., Shen L., Sambandam V., Rao X.-Y., Xi Y.-X., Li L.-R., Qi Y., Gleber-Netto F.O., Patel A., Wang J., Frederick M.J., Myers J.N., Pickering C.R., Johnson F.M.
Genomic characterization of human papillomavirus-positive and -negative human squamous cell cancer cell lines.
Oncotarget 8:86369-86383(2017)
PubMed=30175587; DOI=10.1021/acs.jproteome.8b00392
Robin T., Bairoch A., Muller M., Lisacek F., Lane L.
Large-scale reanalysis of publicly available HeLa cell proteomics data in the context of the Human Proteome Project.
J. Proteome Res. 17:4160-4170(2018)
PubMed=30778230; DOI=10.1038/s41587-019-0037-y
Liu Y.-S., Mi Y., Mueller T., Kreibich S., Williams E.G., Van Drogen A., Borel C., Frank M., Germain P.-L., Bludau I., Mehnert M., Seifert M., Emmenlauer M., Sorg I., Bezrukov F., Sloan-Bena F., Zhou H., Dehio C., Testa G., Saez-Rodriguez J., Antonarakis S.E., Hardt W.-D., Aebersold R.
Multi-omic measurements of heterogeneity in HeLa cells across laboratories.
Nat. Biotechnol. 37:314-322(2019)
PubMed=30787054; DOI=10.1158/1055-9965.EPI-18-1132; PMCID=PMC6548687
Hooker S.E. Jr., Woods-Burnham L., Bathina M., Lloyd S., Gorjala P., Mitra R., Nonn L., Kimbro K.S., Kittles R.A.
Genetic ancestry analysis reveals misclassification of commonly used cancer cell lines.
Cancer Epidemiol. Biomarkers Prev. 28:1003-1009(2019)
PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Cancer Res. 79:1263-1273(2019)
PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature 569:503-508(2019)
PubMed=31433507; DOI=10.15252/embj.2018100847; PMCID=PMC6826212
Hardman G., Perkins S., Brownridge P.J., Clarke C.J., Byrne D.P., Campbell A.E., Kalyuzhnyy A., Myall A., Eyers P.A., Jones A.R., Eyers C.E.
Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation.
EMBO J. 38:e100847.1-e100847.22(2019)
PubMed=31790455; DOI=10.1371/journal.pone.0225466; PMCID=PMC6886862
Hu W.-E., Zhang X., Guo Q.-F., Yang J.-W., Yang Y., Wei S.-C., Su X.-D.
HeLa-CCL2 cell heterogeneity studied by single-cell DNA and RNA sequencing.
PLoS ONE 14:E0225466-E0225466(2019)
PubMed=33389257; DOI=10.1007/s10096-020-04106-0; PMCID=PMC7778494
Wurtz N., Penant G., Jardot P., Duclos N., La Scola B.
Culture of SARS-CoV-2 in a panel of laboratory cell lines, permissivity, and differences in growth profile.
Eur. J. Clin. Microbiol. Infect. Dis. 40:477-484(2021)"
关键字: Hela人宫颈癌细胞全年复苏|已有STR;传代细胞;复苏细胞;实验细胞;科研细胞;
上海冠导生物工程有限公司,先后从ATCC、DSMZ、ECACC、RIKEN、PromoCell、ScienCell、JCRB等国内外细胞库引进细胞2000余株。以此为契机,公司组建了冠导细胞库,我司细胞均由资深细胞培养工程师进行培养。我司可以提供的细胞有:①细胞系②原代细胞③稳转株④耐药株⑤标记细胞⑥细胞配套试剂等。